Reconciling opposite neighborhood frequency effects in lexical decision: Evidence from a novel probabilistic model of visual word recognition

Abstract : A new Bayesian model of visual word recognition is used to simulate neighborhood frequency effects in lexical decision. These effects have been reported as being either facilitatory or inhibitory in behavioral experiments. Our model manages to simulate the apparently contradictory findings. Indeed, studying the dynamic time course of information accumulation in the model shows that effects are facilitatory early, and become inhibitory at later stages. The model provides new insights on the mechanisms at play and their dynamics, leading to better understand the experimental conditions that should yield a fa-cilitatory or an inhibitory neighborhood frequency effect.
Type de document :
Communication dans un congrès
Liste complète des métadonnées

Littérature citée [21 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01850020
Contributeur : Julien Diard <>
Soumis le : vendredi 10 août 2018 - 10:44:19
Dernière modification le : jeudi 7 février 2019 - 16:31:14
Document(s) archivé(s) le : dimanche 11 novembre 2018 - 12:11:19

Fichier

phenix18b.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01850020, version 1

Collections

Citation

Thierry Phénix, Sylviane Valdois, Julien Diard. Reconciling opposite neighborhood frequency effects in lexical decision: Evidence from a novel probabilistic model of visual word recognition. 40th Annual Conference of the Cognitive Science Society (CogSci 2018), Jul 2018, Madison, WI, United States. pp.2238-2243. ⟨hal-01850020⟩

Partager

Métriques

Consultations de la notice

80

Téléchargements de fichiers

61