The Whitham Equation as a Model for Surface Water Waves - Université Savoie Mont Blanc Access content directly
Journal Articles Physica D: Nonlinear Phenomena Year : 2015

The Whitham Equation as a Model for Surface Water Waves


The Whitham equation was proposed as an alternate model equation for the simplified description of uni-directional wave motion at the surface of an inviscid fluid. As the Whitham equation incorporates the full linear dispersion relation of the water wave problem, it is thought to provide a more faithful description of shorter waves of small amplitude than traditional long wave models such as the KdV equation. In this work, we identify a scaling regime in which the Whitham equation can be derived from the Hamiltonian theory of surface water waves. The Whitham equation is integrated numerically, and it is shown that the equation gives a close approximation of inviscid free surface dynamics as described by the Euler equations. The performance of the Whitham equation as a model for free surface dynamics is also compared to two standard free surface models: the KdV and the BBM equation. It is found that in a wide parameter range of amplitudes and wavelengths, the Whitham equation performs on par with or better than both the KdV and BBM equations.
Fichier principal
Vignette du fichier
MKD-Hal-2015.pdf (454.79 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-01136855 , version 1 (29-03-2015)


Attribution - NonCommercial - ShareAlike



Daulet Moldabayev, Henrik Kalisch, Denys Dutykh. The Whitham Equation as a Model for Surface Water Waves. Physica D: Nonlinear Phenomena, 2015, 309, pp.99-107. ⟨10.1016/j.physd.2015.07.010⟩. ⟨hal-01136855⟩
193 View
222 Download



Gmail Facebook Twitter LinkedIn More